The Matrix Transformations on Double Sequence Space of χ^2_{π}

NAGARAJAN SUBRAMANIAN AND U.K. MISRA

ABSTRACT. Let χ^2 denote the space of all prime sense double gai sequences and Λ^2 the space of all prime sense double analytic sequences. First we show that the set $E = \left\{s^{(mn)} : m, n = 1, 2, 3, \cdots\right\}$ is a determining set for χ^2_{π} . The set of all finite matrices transforming χ^2_{π} into FK-space Y denoted by $(\chi^2_{\pi} : Y)$. We characterize the classes $(\chi^2_{\pi} : Y)$ when $Y = c_0^2, c^2, \chi^2, \ell^2, \Lambda^2$.

			χ^2_{π}		Λ^2
χ^2_{π}	χ^2_{π} Necessary and sufficient condition on the mat				fficient condition on the matrix are obtained

But the approach to obtain these result in the present paper is by determining set for χ^2_{π} . First, we investigate a determining set for χ^2_{π} and then we characterize the classes of matrix transformations involving χ^2_{π} and other known sequence spaces.

1. INTRODUCTION

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued single sequences respectively. We write w^2 for the set of all complex sequences (x_{mn}) , where $m, n \in \mathbb{N}$ the set of positive integers. Then w^2 is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [2]. Later on it was investigated by Hardy [3], Moricz [4], Moricz and Rhoades [5], Basarir and Solankan [1], Tripathy [6], Colak and Turkmenoglu [7], Turkmenoglu [8], and many others. We need the following inequality in the sequel of the paper. For $a, b, \geq 0$ and 0 , we have

(1)
$$(a+b)^p \le a^p + b^p$$

The double series $\sum_{m,n=1}^{\infty} x_{mn}$ is called convergent if and only if the double sequence. (s_{mn}) is called convergent, where $s_{mn} = \sum_{i,j=1}^{m,n} x_{ij}(m, n = 1, 2, 3, ...)$ (see [9]). A sequence $x = (x_{mn})$ is said to be double analytic if $sup_{mn} |x_{mn}|^{1/m+n} < \infty$. The vector space of all double analytic sequences

²⁰⁰⁰ Mathematics Subject Classification. Primary: 40A05, 40C05, 40D05.

Key words and phrases. Determining set, gai sequence, analytic sequence, double sequence.

will be denoted by Λ^2 . A sequence $x = (x_{mn})$ is called double gai sequence if $((m+n)! |x_{mn}|)^{1/m+n} \to 0$ as $m, n \to \infty$. The double gai sequences will be denoted by χ^2 . Let $\phi = \{$ all finite sequences $\}$. Consider a double sequence $x = (x_{ij})$. The $(m, n)^{th}$ section $x^{[m,n]}$ of the sequence is defined by $x^{[m,n]} = \sum_{i,j=0}^{m,n} x_{ij} \Im_{ij}$ for all $m, n \in \mathbb{N}$,

$$\mathfrak{S}_{mn} = \begin{pmatrix} 0, & 0, & \cdots & 0, & 0, & \cdots \\ 0, & 0, & \cdots & 0, & 0, & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \\ 0, & 0, & \cdots & \pi_{mn}, & -\pi_{mn}, & \cdots \\ 0, & 0, & \cdots & 0, & 0, & \cdots \end{pmatrix}$$

with π_{mn} in the $(m, n)^{th}$ position, $-\pi_{mn}$ in the $(m + 1, n + 1)^{th}$ position and zero other wise. An FK-space (or a metric space) X is said to have AK property if (\Im_{mn}) is a Schauder basis for X. Or equivalently $x^{[m,n]} \to x$. An FDK-space is a double sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings $x = (x_k) \to (x_{mn})(m, n \in \mathbb{N})$ are also continuous. If X is a sequence space, we give the following definitions:

(i)
$$X' =$$
 the continuous dual of X ;
(ii) $X^{\alpha} = \{a = (a_{mn}) : \sum_{m,n=1}^{\infty} |a_{mn}x_{mn}| < \infty, \text{ for each } x \in X\};$

(iii)
$$X^{\beta} = \left\{ a = (a_{mn}) : \sum_{m,n=1}^{\infty} a_{mn} x_{mn} \text{ is convergent, for each } x \in X \right\};$$

(iv)
$$X^{\gamma} = \left\{ a = (a_{mn}) : m, n \ge 1 \left| \sum_{m,n=1}^{M,N} a_{mn} x_{mn} \right| < \infty, \text{ for each } x \in X \right\};$$

(v) let X be an FK-space $\supset \phi$; then $X^J = \{f(\mathfrak{S}_{mn}) : f \in X'\};$

(vi)
$$X^{\Lambda} = \left\{ a = (a_{mn}) : sup_{mn} |a_{mn}x_{mn}|^{1/m+n} < \infty, \text{ for each } x \in X \right\}$$

 $X^{\alpha}X^{\beta}, X^{\gamma}$ are called α -(or Köthe-Toeplitz) dual of X; β -(or generalized-Köthe-Toeplitz) dual of X; γ -dual of X, Λ -dual of X respectively.

2. Definitions and Preliminaries

$$\chi_{\pi}^{2} = \left\{ x = (x_{mn}) : \left(\frac{x_{mn}}{\pi_{mn}} \right) \in \chi^{2} \right\};$$

$$\Lambda_{\pi}^{2} = \left\{ x = (x_{mn}) : \left(\frac{x_{mn}}{\pi_{mn}} \right) \in \Lambda^{2} \right\}.$$

The space Λ^{2} is a metric space with the metric.

The space Λ_{π}^{2} is a metric space with the metric

(2)
$$d(x,y) = \sup_{mn} \left\{ \left| \frac{x_{mn} - y_{mn}}{\pi_{mn}} \right|^{1/m+n} : m, n : 1, 2, 3, \dots \right\}$$

for all $x = \{x_{mn}\}$ and $y = \{y_{mn}\}$ in Λ^2 . The space χ^2 is a metric space with th

The space χ^2_{π} is a metric space with the metric

(3)
$$d(x,y) = \sup_{mn} \left\{ \left((m+n)! \left| \frac{x_{mn} - y_{mn}}{\pi_{mn}} \right| \right)^{1/m+n} : m, n : 1, 2, 3, \dots \right\}$$

for all $x = \{x_{mn}\}$ and $y = \{y_{mn}\}$ in χ^2 .

Let X be an BK-space. Then $D = D(X) = \{x \in \phi : ||x|| \le 1\}$ we do not assume that $X \supset \phi$ (i.e.) $D = \phi \bigcap ($ unit closed sphere in X).

Let X be an BK space. A subset E of ϕ will be called a determining set for X if D(X) is the absolutely convex hull of E. In respect of a metric space $(X, d), D = \{x \in \phi : d(x, 0) \leq 1\}.$

Given a sequence $x = \{x_{mn}\}$ and an four dimensional infinite matrix $A = (a_{mn}^{jk}), m, n, j, k = 1, 2, ...$ then A- transform of x is the sequence $y = (y_{mn})$ when $y_{mn} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{mn}^{jk} x_{mn} (j, k = 1, 2, ...)$. Whenever $\sum \sum a_{mn}^{jk} x_{mn}$ exists.

Let X and Y be FK-spaces. If $y \in Y$ whenever $x \in X$, then the class of all matrices A is denoted by (X : Y).

Lemma 2.1. Let X be a BK-space and E is determining set for X. Let Y be an FK-space and A is an four dimensional infinite matrix. Suppose that either X has AK or A is row finite. Then $A \in (X : Y)$ if and only if (1) The columns of A belong to Y and (2) A[E] is a bounded subset of Y.

3. MAIN RESULTS

Theorem 3.1. Let E be the set of all sequences in ϕ each of whose non-zero terms is

$$\begin{pmatrix} 0, & 0, & \cdots & 0, & 0, & \cdots \\ 0, & 0, & \cdots & 0, & 0, & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0, & 0, & \cdots & \frac{\pi_{mn}}{(m+n)!}, & \frac{-\pi_{mn}}{(m+n)!}, & \cdots \\ 0, & 0, & \cdots & 0, & 0, & \cdots \end{pmatrix}$$

with $\frac{\pi_{mn}}{(m+n)!}$, in the $(m,n)^{th}$, $\frac{-\pi_{mn}}{(m+n)!}$, in the $(m+1,n+1)^{th}$ position and zero other wise. Then E is determining set of χ^2_{π} .

Proof. Step 1. Recall that χ^2_{π} is a metric space with the metric

$$d(x,y) = \sup_{mn} \left\{ \left((m+n)! \left| \frac{x_{mn} - y_{mn}}{\pi_{mn}} \right| \right)^{1/m+n} : m, n : 1, 2, 3, \dots \right\}$$

Let A be the absolutely convex hull of E. Let $x \in A$.

Then $x = \sum_{m=1}^{i} \sum_{n=1}^{j} t_{mn} \pi_{mn} s^{(mn)}$ with

(4)
$$\sum_{m,n=1}^{i,j} |t_{mn}| \le 1$$

and $s^{(mn)} \in E$.

Then $d(x,0) \leq |t_{11}| \pi_{11} d(s^{(11)}, 0) + \dots + |t_{ij}| \pi_{ij} d(s^{(ij)}, 0)$. But $d(s^{(mn)}) = 1$ for $m, n = 1, 2, 3, \dots, (i, j)$. Hence $d(x, 0) \leq \sum_{m,n=1}^{i,j} |t_{mn}| \leq 1$ by using

(4). Also $x \in \phi$. Hence $x \in D$. Thus

Step 2: Let $x \in D$

 $\Rightarrow x \in \phi$ and $d(x, 0) \leq 1$.

$$x = \begin{pmatrix} 2!x_{11}, & 3!x_{12}, & \cdots & (1+n)!x_{1n}, & \cdots \\ 3!x_{21}, & 4!x_{22}, & \cdots & (2+n)!x_{2n}, & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ (m+1)!x_{m1}, & (m+2)!x_{m2}, & \cdots, & (m+n)!x_{mn}, & \cdots \\ 0, & 0, & \cdots & 0, & \cdots \end{pmatrix}$$

and

(6)

$$\sup \begin{pmatrix} (2! |x_{11}|)^{1/2}, & (3! |x_{12}|)^{1/3}, & \cdots & ((1+n)! |x_{1n}|)^{1/1+n}, & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ ((m+1)! |x_{m1}|)^{1/m+1}, & ((m+2)! |x_{m2}|)^{1/m+2}, & \cdots & ((m+n)! |x_{mn}|)^{1/m+n}, & \cdots \\ 0, & 0, & \cdots & 0, & \cdots \end{pmatrix}$$

Case (i): Suppose that $2! |x_{11}| \ge \cdots \ge (m+n)! |x_{mn}|$. Let $\xi_{mn} = Sgn((m+n)!x_{mn}) = \frac{(m+n)!|x_{mn}|}{(m+n)!x_{mn}}$ for $m, n = 1, 2, \dots, (i, j)$. Take / `

$$S_{k\ell}\pi_{k\ell} = \begin{pmatrix} \xi_{11}, & \xi_{12}, & \cdots & \xi_{1\ell}, & \cdots \\ \xi_{21}, & \xi_{22}, & \cdots & \xi_{2\ell}, & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ \xi_{k1}, & \xi_{k2}, & \cdots & \xi_{k\ell}, & \cdots \\ 0, & 0, & \cdots & 0, & \cdots \end{pmatrix}$$

for $k, \ell = 1, 2, 3, \dots, (i, j)$.

Then $\pi_{k\ell} s_{k\ell} \in E$ for $k, \ell = 1, 2, 3, \dots, (i, j)$. Also

$$x = (|2!x_{11} - 3!x_{12}| - |3!x_{21} - 4!x_{22}|) \pi_{11}S_{11} + \cdots + (|(m+n)!x_{mn} - (m+n+1)!x_{mn+1}|) - |(m+n+1)!x_{m+1n} - (m+n+2)!x_{m+1n+1}|)\pi_{mn}S_{mn}$$
$$= t_{11}\pi_{11}S_{11} + \cdots + t_{mn}\pi_{mn}S_{mn},$$

so that

$$t_{11} + \dots + t_{mn} = |2!x_{11} - 3!x_{12}| - |(m+n+1)!x_{m+1n} - (m+n+2)!x_{m+1n+1}| = |2!x_{11} - 3!x_{12}|$$

because

$$|(m+n+1)!x_{m+1n} - (m+n+2)!x_{m+1n+1}| = 0 \le 1$$

by using (6).

Hence $x \in A$. Thus $D \subset A$.

Case (ii): Let y be x and let $2! |y_{11}| \ge \cdots \ge (m+n)! |y_{mn}|$. Express y as a member of A as in Case (i). Since E is invariant under permutation of the terms of its members, so is A. Hence $x \in A$. Thus $D \subset A$. Therefore in both cases

$$(7) D \subset A$$

From (5) and (7) A = D. Consequently E is a determining set for χ^2_{π} . This completes the proof.

Proposition 3.1. χ^2_{π} has AK.

Proof. Let $x = (x_{mn}) \in \chi^2_{\pi}$ and take $x^{[mn]} = \sum_{i,j=1}^{m,n} x_{ij} \Im_{ij}$ for all $m, n \in \mathbb{N}$. Hence $d(x, x^{[rs]}) = \sup_{mn} \left\{ \left((m+n)! \left| \frac{x_{mn}}{\pi_{mn}} \right| \right)^{1/m+n} : m \ge r+1, n \ge s+1 \right\}$ $\to 0$ as $m, n \to \infty$

Therefore, $x^{[rs]} \to x$ as $r, s \to \infty$ in χ^2_{π} . Thus χ^2_{π} has AK. This completes proof.

Proposition 3.2. An infinite matrix $A = \left(a_{mn}^{jk}\right)$ is in the class

(8)
$$A \in \left(\chi_{\pi}^2 : c_0^2\right) \Leftrightarrow \lim_{n,k \to \infty} \left(\pi_{mn} a_{mn}^{jk}\right) = 0$$

(9)
$$\Leftrightarrow sup_{mn} \left| \pi_{m1} a_{m1}^{j1} + \dots + \pi_{mn} a_{mn}^{jk} \right| < \infty.$$

Proof. In Lemma 3 take $X = \chi_{\pi}^2$ has AK property and take $Y = (c_0^2)$ be an FK-space. Further more χ_{π}^2 is a determining set E (as in given Proposition 4). Also $A[E] = A(s^{(mn)}) = \left\{ \left(\pi_{m1}a_{m1}^{j1} + \dots + \pi_{mn}a_{mn}^{jk} \right) \right\}$. Again by Lemma 3, $A \in (\chi_{\pi}^2 : c_0^2)$ if and only if:

- (i) The columns of A belong to c_0^2 , and
- (ii) $A(s^{(mn)})$ is a bounded subset χ^2_{π} .

But the condition

(i) $\Leftrightarrow \left\{ \pi_{mn} a_{mn}^{jk} : j, k = 1, 2, \cdots \right\}$ is exits for all m, n; (ii) $\Leftrightarrow sup_{mn} \left| \pi_{m1} a_{m1}^{j1} + \cdots + \pi_{mn} a_{mn}^{jk} \right| < \infty$.

Hence we conclude that $A \in (\chi_{\pi}^2 : c_0^2) \Leftrightarrow$ conditions (8) and (9) are satisfied.

The following proofs are similar. Hence we omit the proof.

Proposition 3.3. An infinite matrix $A = \left(a_{mn}^{jk}\right)$ is in the class

(10)
$$A \in \left(\chi_{\pi}^2 : c^2\right) \Leftrightarrow \lim_{n,k\to\infty} \left(\pi_{mn} a_{mn}^{jk}\right) exists(m, j = 1, 2, 3, ...)$$

(11)
$$\Leftrightarrow sup_{mn} \left| \pi_{m1} a_{m1}^{j1} + \dots + \pi_{mn} a_{mn}^{jk} \right| < \infty.$$

Proposition 3.4. An infinite matrix $A = \left(a_{mn}^{jk}\right)$ is in the class (12)

$$A \in \left(\chi_{\pi}^2 : \chi_{\pi}^2\right) \Leftrightarrow sup_{mn}\left(\frac{1}{\pi_{mn}(m+n)!} \left|a_{m1}^{j1} + \dots + a_{mn}^{jk}\right|\right)^{1/m+n} < \infty.$$

(13)
$$\Leftrightarrow \lim_{n,k\to\infty} \left(\frac{1}{\pi_{mn}(m+n)!} \left| a_{mn}^{jk} \right| \right)^{1/m+n} = 0, \text{ for } m, j = 1, 2, 3, \dots$$

(14)
$$\Leftrightarrow d\left(a_{m1}^{j1}, a_{m2}^{j2}, \cdots, a_{mn}^{jk}\right) \text{ is bounded}$$
for each metric $d \text{ on } \chi^2_{\pi} \text{ and for all } m, n.$

Proposition 3.5. An infinite matrix $A = \left(a_{mn}^{jk}\right)$ is in the class

(15)
$$A \in \left(\chi_{\pi}^{2} : \ell^{2}\right) \Leftrightarrow \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left|a_{mn}^{jk}\right| \text{ converges } (j, k = 1, 2, 3, \dots)$$

(16)
$$\Leftrightarrow sup_{mn} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left| \pi_{mn} a_{mn}^{jk} \right| < \infty$$

Proposition 3.6. An infinite matrix $A = \left(a_{mn}^{jk}\right)$ is in the class

(17)
$$A \in \left(\chi_{\pi}^{2} : \Lambda^{2}\right) \Leftrightarrow sup_{mn}\left(\left|\pi_{mn}\sum_{\gamma=1}^{n}\sum_{\mu=1}^{k}a_{m\gamma}^{j\mu}\right|^{1/m+n}\right) < \infty$$

(18)
$$\Leftrightarrow d\left(a_{m1}^{j1}, a_{m2}^{j2}, \cdots a_{mn}^{jk}\right) \quad is \ bounded$$
for each metric d on Λ^2 and for all m, n .

References

- M. Basarir and O. Solancan, On some double sequence spaces, J. Indian Acad. Math., 21(2) (1999), 193-200.
- [2] Bromwich, An introduction to the theory of infinite series Macmillan and Co.Ltd., New York, 1965.
- [3] G.H. Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19 (1917), 86-95.
- [4] F. Moricz, Extention of the spaces c and c₀ from single to double sequences, Acta. Math. Hungerica, 57(1-2), (1991), 129-136.
- [5] F. Moricz and B.E. Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104, (1988), 283-294.
- [6] B.C. Tripathy, On statistically convergent double sequences, Tamkang J. Math., 34(3), (2003), 231-237.

- [7] R. Colak and A. Turkmenoglu, The double sequence spaces $\ell_{\infty}^2(p), c_0^2(p)$ and $c^2(p)$, (to appear).
- [8] A. Turkmenoglu, Matrix transformation between some classes of double sequences, Jour. Inst. of math. and Comp. Sci. (Math. Seri.), 12(1), (1999), 23-31.
- [9] T. Apostol, Mathematical Analysis, Addison-wesley, London, 1978.
- [10] Erwin Kreyszig, Introductory Functional Analysis with Applications, John Wiley and Sons, 1978.

NAGARAJAN SUBRAMANIAN

DEPARTMENT OF MATHEMATICS SASTRA UNIVERSITY TANJORE-613 402 INDIA *E-mail address*: nsmaths@yahoo.com

U.K. MISRA DEPARTMENT OF MATHEMATICS BERHAMPUR UNIVERSITY BERHAMPUR-760 007 ORISSA INDIA *E-mail address*: umakanta_misra@yahoo.com